LLaMA Factory icon
LLaMA Factory icon

LLaMA Factory

Unified Efficient Fine-Tuning of 100+ LLMs & VLMs (ACL 2024).

LLaMA Factory screenshot 1

Cost / License

Platforms

  • Python
  • Docker  [https://hub.docker.com/r/hiyouga/llamafactory/tags](https://hub.docker.com/r/hiyouga/llamafactory/tags)
  • Linux
  • Windows
-
No reviews
1like
0comments
0news articles

Features

  1.  Command line interface
  2.  AMD
  3.  Support for NVIDIA CUDA acceleration
  4.  AI-Powered

 Tags

  • llama3
  • agent
  • deepseek
  • Fine-tuning
  • qwen
  • instruction-tuning
  • peft
  • gemma
  • moe
  • quantization
  • llama
  • rlhf
  • vllm
  • transformers
  • AI
  • lora
  • GPT
  • qlora

LLaMA Factory News & Activities

Highlights All activities

Recent activities

LLaMA Factory information

  • Developed by

    CN flaghiyouga (Yaowei Zheng)
  • Licensing

    Open Source (Apache-2.0) and Free product.
  • Written in

  • Alternatives

    2 alternatives listed
  • Supported Languages

    • English
    • Chinese

AlternativeTo Categories

AI Tools & ServicesOS & Utilities

GitHub repository

  •  67,114 Stars
  •  8,159 Forks
  •  902 Open Issues
  •   Updated  
View on GitHub
LLaMA Factory was added to AlternativeTo by bugmenot on and this page was last updated .
No comments or reviews, maybe you want to be first?

What is LLaMA Factory?

Easily fine-tune 100+ large language models with zero-code CLI and Web UI

Features

  • Various models: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen3, Qwen3-VL, DeepSeek, Gemma, GLM, Phi, etc.
  • Integrated methods: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
  • Scalable resources: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
  • Advanced algorithms: GaLore, BAdam, APOLLO, Adam-mini, Muon, OFT, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
  • Practical tricks: FlashAttention-2, Unsloth, Liger Kernel, KTransformers, RoPE scaling, NEFTune and rsLoRA.
  • Wide tasks: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc.
  • Experiment monitors: LlamaBoard, TensorBoard, Wandb, MLflow, SwanLab, etc.
  • Faster inference: OpenAI-style API, Gradio UI and CLI with vLLM worker or SGLang worker.

Official Links